scRNA MAST

Author

Harvard Chan Bioinformatics Core

Published

August 14, 2025

Template developed with materials from https://hbctraining.github.io/main/.

This code is in this revision.

Overview

  • Project: name_hbcXXXXX
  • PI: person name
  • Analyst: person in the core
  • Experiment: short description
  • Aim: short description

MAST analysis

Pre-processing

Subset genes observed in at least 10% of cells

Prep for MAST comparison

MAST run with desired contrasts

Output results

[Full MAST object saved]

[MAST summary results output to csv files]

[Significant MAST summary results output to csv files]

Differentially Expressed Genes Table

[Option 1: numbers displayed in digits]

[Option 2: FDR displayed in scientific notation]

Group Mean Heatmap

Volcano plot and Top DEG

This volcano plot shows the genes that are significantly up- and down-regulated as a result of the analysis comparison.

The points highlighted:

  • in grey points are non-significant.
  • in blue have a padj > 0.05 and a log2-fold change > 0.5.
  • in plum have a padj < 0.05 and a log2-fold change < 0.5.
  • in purple are genes that have fdr < 0.05 and a log2-fold change > 0.5.

The dashed lines correspond to the cutoff values of log2 foldchance and padj that we have chosen.

% of expression for Top DEGs

(Option 1: Plain) sc-expression across contrast groups: top 16 DEGs

(Option 2: Colored) sc-expression across contrast groups: top 16 DEGs

Options for dot styles for above plots

Method description

MAST is used to generate differential expressed genes among the supplied contrast groups by taking into account the number of genes activated in every cell, also other batch information (e.g. different samples in the suppliedd seurat object).

Please read more about MAST in its paper and github repository.

R session

List and version of tools used for the QC report generation.

R version 4.5.1 (2025-06-13)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
 [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
 [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
[10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   

time zone: UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] qs_0.27.3              ggpubr_0.6.1           viridis_0.6.5         
 [4] viridisLite_0.4.2      pheatmap_1.0.13        EnhancedVolcano_1.26.0
 [7] ggrepel_0.9.6          knitr_1.50             ggprism_1.0.6         
[10] data.table_1.17.8      lubridate_1.9.4        forcats_1.0.0         
[13] stringr_1.5.1          dplyr_1.1.4            purrr_1.1.0           
[16] readr_2.1.5            tidyr_1.3.1            tibble_3.3.0          
[19] ggplot2_3.5.2          tidyverse_2.0.0        Seurat_5.3.0          
[22] SeuratObject_5.1.0     sp_2.2-0              

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3     jsonlite_2.0.0         magrittr_2.0.3        
  [4] ggbeeswarm_0.7.2       spatstat.utils_3.1-5   farver_2.1.2          
  [7] rmarkdown_2.29         vctrs_0.6.5            ROCR_1.0-11           
 [10] spatstat.explore_3.5-2 rstatix_0.7.2          htmltools_0.5.8.1     
 [13] broom_1.0.9            Formula_1.2-5          sass_0.4.10           
 [16] sctransform_0.4.2      parallelly_1.45.1      bslib_0.9.0           
 [19] KernSmooth_2.23-26     htmlwidgets_1.6.4      ica_1.0-3             
 [22] plyr_1.8.9             cachem_1.1.0           plotly_4.11.0         
 [25] zoo_1.8-14             igraph_2.1.4           mime_0.13             
 [28] lifecycle_1.0.4        pkgconfig_2.0.3        Matrix_1.7-3          
 [31] R6_2.6.1               fastmap_1.2.0          fitdistrplus_1.2-4    
 [34] future_1.58.0          shiny_1.11.1           digest_0.6.37         
 [37] patchwork_1.3.1        tensor_1.5.1           RSpectra_0.16-2       
 [40] irlba_2.3.5.1          crosstalk_1.2.1        labeling_0.4.3        
 [43] progressr_0.15.1       spatstat.sparse_3.1-0  timechange_0.3.0      
 [46] httr_1.4.7             polyclip_1.10-7        abind_1.4-8           
 [49] compiler_4.5.1         withr_3.0.2            backports_1.5.0       
 [52] carData_3.0-5          fastDummies_1.7.5      ggsignif_0.6.4        
 [55] MASS_7.3-65            tools_4.5.1            vipor_0.4.7           
 [58] lmtest_0.9-40          beeswarm_0.4.0         httpuv_1.6.16         
 [61] future.apply_1.20.0    goftest_1.2-3          glue_1.8.0            
 [64] nlme_3.1-168           promises_1.3.3         grid_4.5.1            
 [67] Rtsne_0.17             cluster_2.1.8.1        reshape2_1.4.4        
 [70] generics_0.1.4         gtable_0.3.6           spatstat.data_3.1-6   
 [73] tzdb_0.5.0             RApiSerialize_0.1.4    hms_1.1.3             
 [76] stringfish_0.16.0      car_3.1-3              spatstat.geom_3.5-0   
 [79] RcppAnnoy_0.0.22       RANN_2.6.2             pillar_1.11.0         
 [82] spam_2.11-1            RcppHNSW_0.6.0         later_1.4.2           
 [85] splines_4.5.1          lattice_0.22-7         survival_3.8-3        
 [88] deldir_2.0-4           tidyselect_1.2.1       miniUI_0.1.2          
 [91] pbapply_1.7-4          gridExtra_2.3          scattermore_1.2       
 [94] xfun_0.52              matrixStats_1.5.0      DT_0.33               
 [97] stringi_1.8.7          lazyeval_0.2.2         yaml_2.3.10           
[100] evaluate_1.0.4         codetools_0.2-20       BiocManager_1.30.26   
[103] cli_3.6.5              RcppParallel_5.1.10    uwot_0.2.3            
[106] xtable_1.8-4           reticulate_1.43.0      jquerylib_0.1.4       
[109] Rcpp_1.1.0             globals_0.18.0         spatstat.random_3.4-1 
[112] png_0.1-8              spatstat.univar_3.1-4  parallel_4.5.1        
[115] dotCall64_1.2          listenv_0.9.1          scales_1.4.0          
[118] ggridges_0.5.6         rlang_1.1.6            cowplot_1.2.0